
INL REPORT
INL/EXT-14-33977 (Revision 1)
Unlimited Release
Printed March 2018

RELAP-7 User’s Guide

Prepared by
Idaho National Laboratory
Idaho Falls, Idaho 83415

The Idaho National Laboratory is a multiprogram laboratory operated by
Battelle Energy Alliance for the United States Department of Energy
under DOE Idaho Operations Office. Contract DE-AC07-05ID14517.

Approved for public release; further dissemination unlimited.

Issued by the Idaho National Laboratory, operated for the United States Department of Energy
by Battelle Energy Alliance.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

INL/EXT-14-33977 (Revision 1)
Unlimited Release

Printed March 2018

RELAP-7 User’s Guide

Hongbin Zhang, David Andrs, Joshua Hansel, Ling Zou, Ray Berry, Richard Martineau

3

4

Contents
RELAP-7 Overview . 10
1 RELAP-7 Features . 13

1.1 Software Framework . 13
1.2 Governing Theory . 13
1.3 Computational Approach . 14

2 Model Description . 15
2.1 Fluids Flow Models . 15
2.2 Fluid Properties . 15
2.3 Solution Stabilization Schemes . 16
2.4 Time Integration Schemes . 16
2.5 Components . 17

2.5.1 Check Valves . 17
2.5.2 Compressible Valve . 17
2.5.3 Core Channel . 17
2.5.4 Down Comer . 18
2.5.5 Elbow Pipe . 18
2.5.6 Free Boundary . 18
2.5.7 Heat Generation . 18
2.5.8 Heat Structure . 18
2.5.9 Heat Transfer from an External Application 19
2.5.10 Heat Transfer from Heat Flux . 19
2.5.11 Heat Transfer from Heat Structure . 19
2.5.12 Heat Transfer from Specified Temperature . 19
2.5.13 Ideal Pump . 19
2.5.14 InletDensityVelocity . 20
2.5.15 InletMassFlowRateTemperature . 20
2.5.16 InletStagnationEnthalpyMomentum . 20
2.5.17 InletStagnationPressureTemperature . 20
2.5.18 Junction . 20
2.5.19 Outlet . 21
2.5.20 Pipe . 21
2.5.21 Pipe With Heat Structure . 21
2.5.22 Point Kinetics . 21
2.5.23 Prescribed Reactor Power . 22
2.5.24 Pump . 22
2.5.25 Reactivity Feedback . 22

5

2.5.26 Solid Wall . 22
2.5.27 RCIC Turbine . 22
2.5.28 Valve . 23
2.5.29 Volume Junction . 23
2.5.30 Wet Well . 23

3 Running RELAP-7 . 24
3.1 Complete Step 1 of MOOSE Environment Setup . 24
3.2 Off-site Access . 24
3.3 Setup Your SSH Key . 25
3.4 Checking Out the Code . 26
3.5 Executing RELAP-7 . 26
3.6 Post Processing . 27

4 Input Files . 28
4.1 Global Parameters . 28
4.2 Fluid Properties . 29
4.3 HeatStructureMaterials . 30
4.4 Functions . 30
4.5 Components . 31
4.6 Preconditioner . 33
4.7 Executioner . 34
4.8 Outputs . 35

5 Examples . 37
5.1 Example 1: A Simple Pipe Flow Problem . 37

5.1.1 Problem Description . 37
5.1.2 Input File . 38

5.2 Example 2: Use Functions to Set Initial Conditions for a Simple Pipe Flow
Problem . 42
5.2.1 Problem Description . 42
5.2.2 Input File . 43

5.3 Example 3: Adding Heat to a Simple Pipe Flow Problem 46
5.3.1 Problem Description . 46
5.3.2 Input File . 47

5.4 Example 4: A Simple Pipe Flow Problem with the 7-Equation Model 51
5.4.1 Problem Description . 51
5.4.2 Input File . 51

5.5 Example 5: A Core Channel Problem . 56
5.5.1 Problem Description . 56
5.5.2 Input File . 57

6

5.6 Example 6: A Two Pipes Flow Problem . 61
5.6.1 Problem Description . 61
5.6.2 Input File . 61

5.7 Example 7: A Junction Case with Multiple Pipes In and Out 65
5.7.1 Problem Description . 65
5.7.2 Input File . 65

5.8 Example 8: A Simple Pipe Loop with a Pump . 71
5.8.1 Problem Description . 71
5.8.2 Input File . 71

5.9 Example 9: A Heat Exchanger Problem . 76
5.9.1 Problem Description . 76
5.9.2 Input File . 76

5.10 Example 10: A Loop With Core Channel and Heat Exchanger 82
5.10.1 Problem Description . 82
5.10.2 Input File . 83

5.11 Example 11: A Model Pressurized Water Reactor Problem 92
5.11.1 Problem Description . 92
5.11.2 Input File . 93

References . 112

7

Figures
1 A simple pipe diagram . 37
2 Pressure vs. length for the simple pipe flow problem 38
3 Wall temperature and fluid temperature vs. length for the simple pipe flow

problem . 47
4 Diagram of a core channel . 56
5 Diagram of a two pipes flow problem . 61
6 Diagram of a volume junction case with three pipes flowing in and two

pipes flowing out . 65
7 Diagram of a simple loop of pipes connected by junctions and a pump 71
8 Diagram of a heat exchanger problem . 76
9 Diagram of a loop with core channel and heat exchanger 82
10 Diagram of a model pressurized water reactor problem 92

8

Tables

9

RELAP-7 Overview

The RELAP-7 code is the next generation nuclear reactor system safety analysis code be-
ing developed at the Idaho National Laboratory (INL). The code is based on the INL’s
modern scientific software development framework, MOOSE (Multi-Physics Object Ori-
ented Simulation Environment). The overall design goal of RELAP-7 is to take advantage
of the previous thirty years of advancements in computer architecture, software design,
numerical integration methods, and physical models. The end result will be a reactor sys-
tems analysis capability that retains and improves upon RELAP5’s capability and extends
the analysis capability for all reactor system simulation scenarios.

RELAP-7 will become the next generation tool in the RELAP reactor safety/systems
analysis application series. The key to the success of RELAP-7 is the simultaneous ad-
vancement of physical models, numerical methods, and software design while maintaining
a solid user perspective. Physical models include both PDEs (Partial Differential Equa-
tions) and ODEs (Ordinary Differential Equations) and experimental based closure mod-
els. RELAP-7 utilizes well-posed governing equations for compressible two-phase flow,
which can be strictly verified in a modern verification and validation effort. Closure mod-
els used in TRACE provide a basis for the closure relations that are required in RELAP-7.
RELAP-7 uses modern numerical methods, which allow implicit time integration, second-
order schemes in both time and space, and strongly coupled multi-physics.

RELAP-7 is written with object oriented programming language C++. By using the
MOOSE development environment, the RELAP-7 code is developed by following the
same modern software design paradigms used for other MOOSE development efforts.
The code is easy to read, develop, maintain, and couple with other codes. Most impor-
tantly, the modern software design allows the RELAP-7 code to evolve efficiently with
time. MOOSE is an HPC development and runtime framework for solving computational
engineering problems in a well planned, managed, and coordinated way. By leveraging
millions of lines of open source software packages, such as PETSc (a nonlinear solver de-
veloped at Argonne National Laboratory) and LibMesh (a Finite Element Analysis pack-
age developed at University of Texas), MOOSE reduces the expense and time required
to develop new applications. MOOSE provides numerical integration methods and mesh
management for parallel computation. Therefore RELAP-7 code developers have been
able to focus more upon the physics and user interface capability. There are currently
over 20 different MOOSE based applications ranging from 3-D transient neutron trans-
port, detailed 3-D transient fuel performance analysis, to long-term material aging. Multi-
physics and multi-dimensional analysis capabilities, such as radiation transport and fuel

10

performance, can be obtained by coupling RELAP-7 and other MOOSE-based applica-
tions through MOOSE and by leveraging with capabilities developed by other DOE pro-
grams. This allows restricting the focus of RELAP-7 to systems analysis type simulations
and gives priority to retain and significantly extend RELAP5’s capabilities.

This document provides a user’s guide to help users to learn how to run the RELAP-7
code. A number of example problems and their associated input files are presented in this
document to guide users to run the RELAP-7 code starting with simple pipe problems to
problems with increasing complexity. Because the code is an ongoing development effort,
this RELAP-7 User’s Guide will evolve with periodic updates to keep it current with the
state of the development, implementation, and model additions/revisions.

11

12

1 RELAP-7 Features

An overall description of the RELAP-7 architecture, governing theory, and computational
approach is given here as an instructive, and executive overview of the RELAP-7 distin-
guishing features.

1.1 Software Framework

MOOSE is INL’s development and runtime environment for the solution of multi-physics
systems that involve multiple physical models or multiple simultaneous physical phe-
nomena. The systems are generally represented (modeled) as a system of fully coupled
nonlinear partial differential equation systems (an example of a multi-physics system is
the thermal feedback effect upon neutronics cross-sections where the cross-sections are a
function of the heat transfer). Inside MOOSE, the Jacobian-Free Newton Krylov (JFNK)
method [1, 2] is implemented as a parallel nonlinear solver that naturally supports effec-
tive coupling between physics equation systems (or Kernels). The physics Kernels are de-
signed to contribute to the nonlinear residual, which is then minimized inside of MOOSE.
MOOSE provides a comprehensive set of finite element support capabilities (LibMesh [3],
a Finite Element library developed at University of Texas) and provides for mesh adapta-
tion and parallel execution. The framework heavily leverages software libraries from DOE
SC and NNSA, such as the nonlinear solver capabilities in either the the Portable, Exten-
sible Toolkit for Scientific Computation (PETSc [4]) project or the Trilinos project [5] (a
collection of numerical methods libraries developed at Sandia National Laboratory).

1.2 Governing Theory

The primary basis of the RELAP-7 governing theory includes thermal fluids flow, reactor
core heat transfer, and reactor kinetics models.

With respect to the thermal fluids flow dynamics models, RELAP-7 incorporates both
single- and two-phase flow simulation capabilities encompassing all-speed and all-fluids.
The single phase flow models include isothermal flow and anisothermal flow capabilities.
The two-phase flow models include the well posed two fluid 7-equation model.

In addition to the fluids flow dynamics model, RELAP-7 necessarily simulates the heat

13

transfer process with reactor kinetics as the heat source. The heat-conduction equation for
cylindrical or slab geometries is solved to provide thermal history within solid structures
such as fuel and clad. The volumetric power source in the heat conduction equation for
the fuel comes from the point kinetics model with thermal hydraulic reactivity feedback
considered [6]. The reactor structure is coupled with the thermal fluid through energy
exchange (conjugate heat transfer) employing surface convective heat transfer [7] within
the fluid. The fluid, heat conduction, conjugate heat transfer and point kinetics equations
are solved in a fully coupled fashion in RELAP-7 in contrast to the operator-splitting or
loose coupling approach used in the existing system safety analysis codes.

1.3 Computational Approach

Stated previously, the MOOSE framework provides the bulk of the ”heavy lifting” avail-
able to MOOSE-based applications with a multitude of mathematical and numerical li-
braries. For RELAP-7, LibMesh [3] provides the second-order accurate spatial discretiza-
tion by employing linear basis, one-dimensional finite elements. The Message Passing
Interface (MPI, from Argonne National Laboratory) provides for distributed parallel pro-
cessing. Intel Threading Building Blocks (Intel TBB) allows parallel C++ programs to
take full advantage of multicore architecture found in most large-scale machines of today.
PETSc (from Argonne), Trilinos (from Sandia), and Hypre [8] (from Lawrence Livermore
National Laboratory) provide the mathematical libraries and nonlinear solver capabilities
for the Jacobian-free Newton-Krylov (JFNK) method. In MOOSE, a stiffly-stable, second-
order backward difference (BDF2) formulation is used to provide second-order accurate
time integration for strongly coupled physics in JFNK.

The JFNK method easily allows implicit nonlinear coupling of dependent physics un-
der one general computational framework. Besides rapid (second-order) convergence of
the iterative procedure, the JFNK method flexibly handles multiphysics problems when
time scales of different physics are significantly varied during transients. The key feature
of the JFNK method is combining Newton’s method to solve implicit nonlinear systems
with Krylov subspace iterative methods. The Krylov methods do not require an explicit
form of the Jacobian, which eliminates the computationally expensive step of forming Ja-
cobian matrices (which also may be quite difficult to determine analytically), required by
Newton’s method. The matrix-vector product can be approximated by the numerical dif-
ferentiation of nonlinear residual functions. Therefore, JFNK readily integrates different
physics into one solver framework.

14

2 Model Description

2.1 Fluids Flow Models

The RELAP-7 code has two flow models implemented. These include:
(1) a single phase fluid flow model,
(2) a nonhomogeneous, nonequilibrium seven-equation two phase flow model.

2.2 Fluid Properties

The fluid properties are specified in the FluidProperties block. For the single phase flow
model, various types of equation of state can be used. These include:
(1). Linear equation of state for non-isothermal single phase flow. This is turned on by
setting type = LinearFluidProperties.

(2). Stiffened gas equation of state which is turned on by setting
type = StiffenedGasFluidProperties for single phase flow

(3). Ideal gas equation of state which is turned on by setting type=IdealGasFluidProperties.
The equation of state for the nitrogen and helium gas has also been implemented into the
code. It can be turned on by setting type=N2FluidProperties and type=HeliumFluidProperties,
respectively.

(4). IAPWS-95 water and steam thermodynamic properties. It can be turned on by setting
type=IAPWS95LiquidFluidProperties.

For the seven-equation two phase flow model, the stiffened gas equation of state and the
IAPWS-95 water and steam thermodynamic properties are applicable. They can be turned
on by setting
type = StiffenedGas7EqnFluidProperties
or
type = IAPWS957EqnFluidProperties.

15

2.3 Solution Stabilization Schemes

It is well known that the continuous Galerkin finite element method is unstable when
applied directly to hyperbolic systems of equations. Therefore the solution stabilization
schemes are required for RELAP-7. The stabilization schemes can be turned on by adding
the Stabilizations block in the input file. Currently available options of solution stabiliza-
tion for RELAP-7 include:

(1). Streamline Upwind/Petrov Galerkin method (SUPG). The SUPG scheme works for
the single phase flow only. It can be used by setting type = SUPG.

(2). Lapidus scheme works for both the single phase flow and the two phase flow cases. It
can be used by setting type = Lapidus.

(3). The entropy viscosity method works for both the single phase flow and the two phase
flow problems. This option can be used by setting type = ’EntropyViscosity’. Both
the first order and second order entropy viscosity methods are available in the RELAP-
7 code. The default method is the second order entropy viscosity method. In order to
use the first order entropy viscosity method, some additional inputs are required in the
Stabilizations block such as setting:
use f irst order v f = true,
use f irst order liquid = true,
use f irst order vapor = true.

(4). The pressure based stabilization scheme works for both the single phase and the two
phase flow problems. This scheme can be used by setting type = ’StabilizationPressure’.
Both the first order and the second order pressure based stabilization methods are available
in the RELAP-7 code. They can be used by setting order = FIRST or order = SECOND
respectively in the Stabilizations block of the input file.

2.4 Time Integration Schemes

All the time integration schemes in MOOSE are available in RELAP-7. However, there
are two types of time integration schemes mostly used in the RELAP-7 code - Implicit
Euler and BDF2. Implicit Euler is a first order accurate time integration scheme. This can
be turned on by setting:scheme = ’implicit-euler’ in the Executioner input block

16

(explained later). This is the default option for RELAP-7. BDF2 is a second order accurate
time integration scheme. This is the recommended option for RELAP-7.

2.5 Components

A real reactor system is very complex and contains hundreds of different physical compo-
nents. It is impractical to resolve the real geometry of the entire system. Instead simpli-
fied thermal hydraulic models are used to represent (via “nodalization”) the major phys-
ical components and describe the major physical processes (such as fluids flow and heat
transfer). There are three main types of components developed in RELAP-7: (1) one-
dimensional (1-D) components describing the geometry of the reactor system, (2) zero-
dimensional (0-D) components for setting boundary conditions, and (3) 0-D components
for connecting 1-D components.

2.5.1 Check Valves

The check valve (CheckValve) component simulates the dynamic behavior of check valves,
with the form loss calculated by the abrupt area change model.

2.5.2 Compressible Valve

The compressible valve (CompressibleValve) component simulates the open and close be-
havior of valves for compressible fluid flow, including ckoking. It can be used to simulate
the safety relief valves (SRV) of BWRs.

2.5.3 Core Channel

The core channel (CoreChannel) component is a composite component designed to sim-
ulate the coolant flow and heat conduction inside a fuel rod as well as the conjugate heat
transfer between the coolant and the fuel rod. In this component, the fuel rod is divided
into the same number of segments as that of the coolant flow pipe elements. Each fuel rod
segment is further simulated as 1-D or 2-D heat conduction model perpendicular to the
fluid flow model. Both plate type fuel rod and cylindrical fuel rod type can be simulated.

17

The solid fuel part is able to deal with typical LWR fuel rod with complex clad/gap/fuel
pellet geometries. The flow model and conjugate heat transfer model are fully coupled
in contrast to loosely coupled in the existing systems analysis codes such RELAP5 and
TRACE, etc.

2.5.4 Down Comer

The down comer (DownComer) component simulates a large volume to mix different
streams of water and steam and to track the water level. This component is applicable
to BWRs only.

2.5.5 Elbow Pipe

The elbow pipe (ElbowPipe) component is a pipe component that includes a bend with a
radius and an angle.

2.5.6 Free Boundary

The free boundary (FreeBoundary) component provides an open end boundary condition
used for 1D components that must be connected to components at both ends.

2.5.7 Heat Generation

The heat genertion (HeatGeneration) component specifies the component and the material
region that heat is generated in, and how that heat is distributed, from a power source
originating in a separate component.

2.5.8 Heat Structure

The heat structure (HeatStructure) component models a solid material that conducts en-
ergy within the solid, and that convects energy into the adjacent pipe components. The

18

heat structure is 2D only, and either a cylinder or plate. It can be a composite of several
materials, and can be divided into a mesh.

2.5.9 Heat Transfer from an External Application

The HeatTrans f erFromExternalAppTemperature component connects the fluid flow in
a pipe with the pipe surface temperatures calculated by an external application such as the
BISON code.

2.5.10 Heat Transfer from Heat Flux

The HeatTrans f erFromHeatFlux component connects the fluid flow in a pipe with spec-
ified pipe wall heat flux such that the heat transfer between the fluids and the pipe wall can
be calculated.

2.5.11 Heat Transfer from Heat Structure

The HeatTrans f erFromHeatStructure component connects the fluid flow in a pipe with
the HeatStructure component such that the heat transfer between the fluids and heat struc-
ture can be calculated.

2.5.12 Heat Transfer from Specified Temperature

The HeatTrans f erFromSpeci f iedTemperature component connects the fluid flow in a
pipe with specified pipe wall temperatures such that the heat transfer between the fluids
and pipe wall can be calculated.

2.5.13 Ideal Pump

The ideal pump (IdealPump) component is a junction component that provides a mass
flow rate boundary condition between two pipe components.

19

2.5.14 InletDensityVelocity

The InletDensityVelocity component specifies density and velocity boundary conditions
to the inlet of a pipe component.

2.5.15 InletMassFlowRateTemperature

The InletMassFlowRateTemperature component specifies mass flow rate and tempera-
ture boundary conditions to the inlet of a pipe component.

2.5.16 InletStagnationEnthalpyMomentum

The InletStagnationEnthal pyMomentum component provides prescribed momentum and
prescribed specific total enthalpy boundary conditions to the inlet of a pipe component.

2.5.17 InletStagnationPressureTemperature

The InletStagnationPressureTemperature component provides prescribed stagnation pres-
sure and prescribed stagnation temperature boundary conditions to the inlet of a pipe com-
ponent.

2.5.18 Junction

The junction (Junction) model is a 0-D component representing a junction with no volume
(inertia) effects considered, and with single/multiple inlets and single/multiple outlets, of
which cross section areas can be different. This model conserves the mass and energy
among all connecting components. This component thusfar only works for single phase
fluids flow.

20

2.5.19 Outlet

The outlet (Outlet) component provides a backpressure boundary condition to the outlet
of a pipe component. An example would be a pressure sink for a relief valve. There is an
option for a reversible outlet with flow at the outlet conditions from the outlet component
into the pipe component.

2.5.20 Pipe

The pipe (Pipe) component is the most basic component in RELAP-7. It is a 1-D compo-
nent which simulates thermal fluids flow in a pipe. Both a constant cross section area and
a variable cross section area options are available for the Pipe component. The wall fric-
tion and heat transfer coefficients are either calculated through closure models or provided
by user input. All the thermal fluids dynamic models are available in the Pipe compo-
nent which includes the single-phase non-isothermal flow model and the nonequilibrium
7-equation two-phase model.

2.5.21 Pipe With Heat Structure

The pipe with heat structure (PipeWithHeatStructure) component simulates fluids flow in
a 1-D pipe coupled with 1-D or 2-D heat conduction through the pipe wall. The adiabatic,
Dirichlet, or convective boundary conditions at the outer surface of the pipe wall are avail-
able. Either a plate type or cylindrical type of heat structure can be selected. Volumetric
heat source within the fluids or solid materials can be added.

2.5.22 Point Kinetics

The point kinetics (PointKinetics) model is a lumped parameter neutron kinetics model
to calculate the reactor power. User input reactivity or fully coupled feedback reactivity
models are available.

21

2.5.23 Prescribed Reactor Power

The prescribed reactor power (PrescribedReactorPower) component is a virtual compo-
nent that allows users to provide a constant value of reactor power, or a function name that
returns the reactor power as a function of time.

2.5.24 Pump

A simple pump (Pump) model to provide a head and a reverse flow form loss coefficient
(K) for either isothermal flow and non-isothermal flow. It can be driven by an user input
head or through a driving component which provides shaft work.

2.5.25 Reactivity Feedback

The reactivity feedback (ReactivityFeedback) component calculates the reactivity feed-
back due to a change in moderator density (using a table of pairs of values) or using a
moderator temperature coefficient of reactivity, and due to a change in the fuel tempera-
ture (using a table of pairs of values) or using a fuel temperature (Doppler) coefficient of
reactivity. The resulting change in reactivity is then used in the point kinetics component.

2.5.26 Solid Wall

The solid wall (SolidWall) component is a boundary condition for a dead-ended pipe
component. Therefore there is no flow circulating through the pipe, however the mass in
the pipe can change due to coolant expansion or contraction.

2.5.27 RCIC Turbine

The turbine (Turbine) model in RELAP-7 is a simplified dynamical turbine model to sim-
ulate a reactor core isolation cooling (RCIC) turbine, which drives the RCIC pump through
a common shaft.

22

2.5.28 Valve

The valve (Valve) component simulates the open and close behaviors of valves for incom-
pressible flow with user given trigger and response time. The abrupt area change model is
used to calculate the form loss.

2.5.29 Volume Junction

The volume junction (VolumeJunction) model is a 0-D component representing a join-
t/junction model with volume (inertia) effects considered. This model conserves the mass
and energy among all connecting components. This component currently only works for
single-phase fluids flow and two-phase flow capability is still being developed.

2.5.30 Wet Well

The wet well (WetWell) component simulates the dynamic response of a BWR suppression
pool and its gas space.

23

3 Running RELAP-7

3.1 Complete Step 1 of MOOSE Environment Setup

The system environment setup for MOOSE can be found with the link:
http://www.mooseframework.org/getting-started

3.2 Off-site Access

If you are accessing the code from an off-site location (i.e. from a network that is ouside
of the INL’s internal network), you will need to open SSH and HTTP tunnel. The SSH
tunnel itself will give you access to the code repository and the HTTP tunnel will allow
you to access RELAP-7 web pages.

To setup your machine to use the SSH tunnel, modify your ˜/.ssh/config file so it
contains:

Host hpcgitlab.inl.gov
User <your HPC username here >
ProxyCommand nc -x localhost :5555 %h %p

Note that you need to do this only once.

To open the SSH tunnel, you will need your RSA token that is associated with your
HPC account.

In a terminal, run:

$ ssh -D 5555 hpclogin.inl.gov

When asked, enter your PIN and the number from your RSA token.

Now, you need to setup SOCKS proxy in your web browser, so you can access RELAP-
7 web pages. The settings are:

hostname: localhost
port: 5555

24

http://www.mooseframework.org/getting-started

This is browser and platform dependent, so we will not describe steps for every possible
combination. Web search typically reveals necessary steps.

At this point you should be able to access https://hpcgitlab.inl.gov/. If you
do not have access to the code yet, login into the system and send your user name to the
technical point of contact. When the access is granted you will recieve an email from the
system about it.

3.3 Setup Your SSH Key

You have to setup your SSH key on the hpcgitlab web page in order to access the code.

SSH key allows you to establish a secure connection between your computer and Git-
Lab. Before generating an SSH key, check to see if your system already has one by running
cat ˜/.ssh/id rsa.pub. If you see a long string starting with ssh-rsa or ssh-dsa, you
can skip the ssh-keygen step below.

To generate a new SSH key, just open your terminal and use the code below. The
ssh-keygen command prompts you for a location and filename to store the key pair and
for a password. When prompted for the location and filename you can press enter to use
the default. It is a best practice to use a password for an SSH key but it is not required and
you can skip creating a password by pressing enter. Note that the password you choose
here can not be altered or retrieved.

ssh-keygen -t rsa -C "$your_email"

Use the code below to show your public key.

cat ∼/.ssh/id_rsa.pub

Go into the section SSH Keys in your profile and click Add SSH Key. Copy and paste the
key to the Key section and name your key as well. Please copy the complete key starting
with ssh- and ending with your username and host.

To test your SSH key.

$ ssh git@hpcgitlab.inl.gov
Welcome to GitLab , <your name here >!
Connection to hpcgitlab.inl.gov closed.

25

https://hpcgitlab.inl.gov/

3.4 Checking Out the Code

$ cd ∼/projects/
$ git clone git@hpcgitlab.inl.gov:idaholab/relap -7.git
$ cd relap -7
$ git submodule init
$ git submodule update

It is necessary to build libmesh before building any application.

$ cd ∼/projects/relap -7/moose
$./scripts/update_and_rebuild_libmesh.sh

Once libmesh has been successfully compiled, you may now compile RELAP-7.

cd ∼/projects/relap -7
make (add -jn to run on multiple "n" processors)

Once RELAP-7 has been compiled successfully, it is recommended to run the tests to
make sure the version of the code you have is running correctly.

cd ∼/projects/relap -7
./run_tests (add -jn to run "n" jobs at one time)

3.5 Executing RELAP-7

When first starting out with running RELAP-7, it is recommended to start from an example
problem. Multiple example problems with input files are presented in this document. More
examples can be found under the /relap-7/test/tests subdirectory. To demonstrate
how to run RELAP-7, consider the phy.PWR core channel.i test problem.

cd ∼/projects/relap -7/test/tests/components/core_channel/
To run with one processor
∼/projects/relap -7/relap -7-opt -i phy.PWR_core_channel.i
To run using multiple treads:
∼/projects/relap -7/relap -7-opt -i phy.PWR_core_channel.i --n-threads=4

26

3.6 Post Processing

RELAP-7 typically writes solution data to an ExodusII file. The solution data may also
be written in other formats, one being a comma separated values (CSV) file, which allows
the solution data to be saved in a table structured format. The other being a tecplot file in
either binary or ASCII format.

Several options exist for viewing ExodusII output files. One good choice is to use
open-source software, Paraview (www.paraview.org).

27

www.paraview.org

4 Input Files

RELAP-7 uses a block-structured input file. Each block is identified with square brackets.
The opening brackets contain the type of the input block and the empty brackets mark the
end of the block. Each block may contain subblocks.

[BlockName]
<block line commands >
[./subblock_name]

<subblock line commands >
[../]

[]

Each subblock must have an unique name when compared with all other subblocks in the
current block.

Line commands are given as parameter and value pairs with an equal sign between
them. They specify parameters to be used by the object being described. The parameter
is a string, and the value may be a string, an integer, a real number, or a list of strings,
integers, or real numbers. Lists are given in single quotes and are separated by whitespace.

Subblocks normally contain a type line command. This line command specifies the
particular type of object being described.

RELAP-7 uses SI units. This stsndardizes the model input by eliminating the possibil-
ity of errors caused by using one set of units for one model and another set of units for a
different model.

The following subsections have brief descriptions of each block. More detailed de-
scriptions can be found in the examples section.

4.1 Global Parameters

The GlobalParams block specifies the global parameters used by the code such as the
initial pressure (initial p), velocity (initial vel) and temperature (initial T) of the
system model, the stabilzation scheme type (stabilization), and the scaling factors
(scaling factor 1phase) for the primary variable, etc. The values of global parameters
are available to any other block or subblock in the input file. If a command line is missing

28

in a block or a subblock but defined in GlobalParams, the block or subblock will use the
parameter defined in GlobalParams. However, if the block or subblock has a command
line, that will be used regardless of what is in GlobalParams.

The following is an example of the GlobalParams block:

[GlobalParams]
initial_p = 15.17e6
initial_vel = 1.
initial_T = 564.15

scaling_factor_1phase = ’1.e0 1.e-2 1.e-5’

stabilization = evm1
[]

symbol indicates comments in the input file and can be located anywhere in the input
file.

initial p Initial pressure (Pa).
initial vel Initial velocity (m/s).
initial T Initial temperature (K).
scaling factor 1phase Scaling factors.
stabilization Solution stabilization schemes.

4.2 Fluid Properties

The FluidProperties block specifies the equation of state to be used by the code. The
following is an example of the FluidProperties block:

[FluidProperties]
[./eos]

type = IAPWS95LiquidFluidProperties
[../]

[]

type The type of equation of state to be used.

29

4.3 HeatStructureMaterials

The HeatStructureMaterials block specifies the properties of the solid materials for
the code. The following is an example of the HeatStructureMaterials block:

[HeatStructureMaterials]
[./fuel -mat]

type = SolidMaterialProperties
k = 2.5
Cp = 300.
rho = 1.032e4

[../]
[./gap-mat]

type = SolidMaterialProperties
k = 0.6
Cp = 1.
rho = 1.

[../]
[./clad -mat]

type = SolidMaterialProperties
k = 21.5
Cp = 350.
rho = 6.55e3

[../]
[]

k Thermal conductivity (W/(m ·K)).
Cp Specific heat (J/(Kg ·K)).
rho Density of solid materials (Kg/m3).

4.4 Functions

The Functions block provides the functions to be used by the code during the simulations
such as reactor power as a function of time or a boundary condition pressure as a function
of time, etc. The following is an example of defining pressure distribution as a function of
x.

[Functions]

30

[./p_func]
axis = x
type = PiecewiseLinear
x = ’0 3’
y = ’1.05e5 1e5’

[../]
[]

axis For RELAP-7 1-D components, only the x coordinate is used in the calculations
and hence axis is set to be 0 which allows a function to be defined as a function
x. The axis used (0, 1, or 2 for x, y, or z) if this is to be a function of position. If
axis is not given in the input file, the data pair of (x,y) will be taken as a time
function.

type Type of functions used to interpolate data between data points.
x The coordinate used for the x-axis data. This is the pipe axial direction spatial

coordinate relative to the starting point.
y The initial pressure distribution function data point values.

4.5 Components

The Components block specifies the components to be used in the simulations. The list of
available components is shown in Section 2.5.

[Components]
[./reactor]

type = PrescribedReactorPower
function = 77337.69407

[../]

[./CCH1]
type = CoreChannel
fp = eos
geometry
position = ’0 0 0’
orientation = ’0 0 1’
A = 8.78882e-5
D_h = 0.01179
length = 3.865
n_elems = 20

31

f = 0.01
Hw = 5.33e4
initial_Ts = 559.15
dim_hs = 2
fuel_type = cylinder
name_of_hs = ’fuel gap clad ’
n_heatstruct = 3
width_of_hs = ’0.004096 0.0001 0.000552’
elem_number_of_hs = ’10 1 2’
material_hs = ’fuel -mat gap-mat clad -mat’
power = reactor
power_fraction = ’1.0 0.0 0.0’

[../]

[./inlet]
type = InletDensityVelocity
input = ’CCH1:pipe(in)’
rho = 753.68
vel = 4.43

[../]
[./outlet]

type = Outlet
input = ’CCH1:pipe(out)’
p = ’155.e5’
legacy = true

[../]
[]

[./reactor] Subblock for the reactor component.
function Prescribed reactor power either as a constant or as a function of

time.
[./CCH1] Subblock for the core channel component.
Hw Wall heat transfer coefficient.
initial Ts Prescribed initial temperature of the solid materials.
dim hs The dimension of the mesh used for the heat conduction calcu-

lations in the heat structure. The options are dim hs=1 for 1D
heat conduction calculations or dim hs=2 for 2D heat conduc-
tion calculations.

fuel type Geometry type of the fuel. The available options are fuel type
= cylinder or fuel type = plate.

32

name of hs Prescribed heat structure names.
n heatstruct Prescribed number of heat structures.
width of hs Width of each heat structure.
elem number of hs Number of elements of each heat structure.
material hs Name of the materials (defined in the Materials block) used in

the heat structure.
power fraction The fraction of reactor power that goes into each heat structure.

4.6 Preconditioner

The Preconditioning block specifies the preconditioner to be used by the precondi-
tioned JFNK solver for the RELAP-7 code. The solution algorithm for RELAP-7 is the
Jacobian-free Newton-Krylov (JFNK) method. However the Krylov methods need pre-
conditioning to be efficient. Hence, the solvers available in RELAP-7 are preconditioned
JFNK (PJFNK). Two options are available in RELAP-7 to build the preconditioning ma-
trix, the single matrix preconditioner (SMP) and the finite difference preconditioner (FDP).
The SMP option uses all the Jacobian terms derived analytically to build one precondition-
ing matrix. The FDP option uses numerical Jacobian by doing direct finite differences of
the residual terms. The SMP option is the more efficient and is the recommended op-
tion, while the FDP option is normally slow and inefficient and is recommended to be
used for small problems or for debugging purposes. The following is an example of the
Preconditioning block:

[Preconditioning]
Uncomment one of the lines below to activate one of the blocks...
active = ’SMP_PJFNK ’

#active = ’FDP_PJFNK ’

The definitions of the above -named blocks follow.
[./SMP_PJFNK]

type = SMP
full = true # off diagonal blocks are used
solve_type = ’PJFNK ’ # Preconditioned JFNK solver

[../]

[./FDP_PJFNK]
type = FDP
full = true

33

solve_type = ’PJFNK ’
[../]

[]

type Indicating the preconditioning matrix type is SMP for this case.
full true means the entire preconditioning matrix will be assembled in the

calculations.
solve type PJFNK: Preconditioned Jacobian-Free Newton Krylov JFNK:

Jacobian-Free

4.7 Executioner

The Executioner block specifies the executioner that will be used in the simulations.
There are two main types of executioner - Transient and Steafy.

[Executioner]
type = Transient
scheme = ’bdf2 ’
dt = 1.e-2
dtmin = 1.e-5

nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 15

l_tol = 1e-6
l_max_its = 30

start_time = 0.0
end_time = 10.0
num_steps = 300

[./Quadrature]
type = TRAP
order = FIRST

[../]
[]

type Transient executioner type will be used.

34

scheme BDF2 time integration will be used. If this is absent, the default
option of BDF2 will be used.

dt Time step size to be used .
dtmin Minimum time step size to be used. If the time step size is below

this value, the case will stop executing.
nl rel tol Relative tolerance for the nonlinear solve. The recommended value

is 1.0E-8.
nl abs tol Absolute tolerance for the nonlinear solve. The recommended

value is 1.0E-6.
nl max its Maximum number of nonlinear solve iterations. The recommended

value is 15.
l tol Relative tolerance for the linear Krylov solve. The recommended

value is 1.0E-6.
l max its Maximum number of liner iterations. The recommended value is

30.
start time The start time of the simulation.
end time The end time of the simulation.
num steps The maximum number of time integration steps for the simulation.

The simulation will stop either the maximum number of time steps
is reached or the end time is reach.

[./Quadrature] The quadrature subblock. This is the recommended option.
type Type of the quadrature rule. Advanced users can refer to the

MOOSE manual for other options.
order Order of the quadrature.

4.8 Outputs

The Outputs block controls the various screen and file output in the simulations.

[Outputs]
print_perf_log = true
[./ out_displaced]

type = Exodus
use_displaced = true
sequence = false

[../]
[]

print perf log Enable printing of the performance log to the screen (Console)

35

type Exodus output file type.
sequence = true, otherwise defaults to false

36

5 Examples

5.1 Example 1: A Simple Pipe Flow Problem

5.1.1 Problem Description

Example 1 simulates water flowing through a pipe using IAPWS-95 fluid properties. The
inlet boundary condition is set by InletDensityVelocity with liquid density at ρ = 753.632
kg/m3 and liquid velocity at vel = 4.43 m/s. The outlet boundary condition is set by
Outlet with the pressure set at p = 15.51E6 pa.

Figure 1. A simple pipe diagram

A 1D model can be viewed in Paraview to visualize the process better. Once Paraview is
opened, on the left, select all of the variables and click ”Apply.” In the filters tab, under
”Data Analysis”, select ”Plot Over Line” and apply. When this is done, each parameter
in the problem can be viewed plotted over the length of the pipe. The figure below shows
pressure vs length.

37

P
re

s
s

u
re

 [
P

a
]

1.551e+07

1.5511e+07

1.5512e+07

1.5513e+07

1.5514e+07

1.5515e+07

1.5516e+07

1.5517e+07

1.5518e+07

1.5519e+07

1.552e+07

1.5521e+07

1.5522e+07

1.5523e+07

1.5524e+07

1.5525e+07

1.5526e+07

1.5527e+07

Length [m]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 2. Pressure vs. length for the simple pipe flow problem

5.1.2 Input File

The following shows the input file to run this example problem:

38

[GlobalParams]
gravity = ’0 0 0’
initial_p = 15.51e6
initial_T = 559.15
initial_vel = 0.0
closures_type = TRACE

[]

[FluidProperties]
[./eos]
type = IAPWS95LiquidFluidProperties

[../]
[]

[Components]
[./pipe]
type = Pipe
position = ’0 0 0’
orientation = ’1 0 0’
length = 2.0
n_elems = 5
A = 8.78882e-5
D_h = 0.01179
fp = eos

[../]

[./inlet]
type = InletDensityVelocity
input = ’pipe(in)’
rho = 753.632
vel = 4.43

[../]

[./outlet]
type = Outlet
input = ’pipe(out)’
p = 15.51e6

39

legacy = true
[../]

[]

[Preconditioning]
[./SMP_PJFNK]

type = SMP
full = true
solve_type = ’PJFNK’
line_search = basic

[../]
[]
[Executioner]
type = Transient
scheme = ’bdf2’
dt = 0.01
dtmin = 1.0e-8

nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
nl_max_its = 30

l_tol = 1e-5
l_max_its = 10

start_time = 0.0
end_time = 10.0
timestep_tolerance = 1e-10

[./Quadrature]
type = TRAP
order = FIRST

[../]
[]

[Outputs]
[./out_displaced]

type = Exodus

40

use_displaced = true
sequence = false

[../]
[]

41

5.2 Example 2: Use Functions to Set Initial Conditions for a Simple
Pipe Flow Problem

5.2.1 Problem Description

This example illustrates how to use functions to set the initial conditions. This example
allows the user to set the pipe wall friction coefficient. The Functions block is used to set
the pipe wall friction coefficient. This example uses the PiecewiseLinear function which
takes a set of x and y values and creates a linear function from it.

The pressure difference can be calculated using the following equation to verify the code
calculated results:

∆P =
f Lρu2

2Dh
(1)

where f is the pipe wall friction coefficient, L is the pipe length, ρ is the density, u is the
velocity, D h is the hydraulic diameter, and P is pressure. Density and velocity values can
be found using Paraview to perform the hand calculation.

42

5.2.2 Input File

[GlobalParams]
gravity = ’0 0 0’
initial_p = 15.51e6
initial_T = 559.15
initial_vel = 0.0
closures_type = TRACE

[]

[FluidProperties]
[./eos]
type = IAPWS95LiquidFluidProperties

[../]
[]

[Functions]
[./f_func]
type = PiecewiseLinear
x = ’0 0.05 0.1’
y = ’0.01 0.02 0.02’

[../]
[]

[Components]
[./pipe]
type = Pipe
position = ’0 0 0’
orientation = ’1 0 0’
length = 2.0
n_elems = 5
A = 8.78882e-5
D_h = 0.01179
fp = eos
f = f_func

[../]

[./inlet]

43

type = InletDensityVelocity
input = ’pipe(in)’
rho = 753.632
vel = 4.43

[../]

[./outlet]
type = Outlet
input = ’pipe(out)’
p = 15.51e6
legacy = true

[../]
[]
[Preconditioning]
[./SMP_PJFNK]

type = SMP
full = true
solve_type = ’PJFNK’
line_search = basic

[../]
[]

[Executioner]
type = Transient
scheme = ’bdf2’
dt = 0.01
dtmin = 1.0e-8

nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
nl_max_its = 30

l_tol = 1e-5
l_max_its = 10

start_time = 0.0
end_time = 10.0
timestep_tolerance = 1e-10

44

[./Quadrature]
type = TRAP
order = FIRST

[../]
[]

[Outputs]
[./out_displaced]
type = Exodus
use_displaced = true
sequence = false

[../]
[]

45

5.3 Example 3: Adding Heat to a Simple Pipe Flow Problem

5.3.1 Problem Description

This example shows how to add heat to the fluid in a simple pipe flow problem. The heat
can be added either from a specified pipe wall temperature or from a specified heat flux
through the pipe wall. The input file for this example builds upon that used for example 2.
In this example, an new input block is added to add the HeatTrans f erFromSpeci f iedTemperature
component such that the pipe wall temperature can be specified. The wall temperature is
set as: T wall = 565 K. Alternatively, if a constant pipe wall heat flux needs to be in-
putted, then the HeatTrans f erFromHeatFlux component needs to be added and the heat
flux is supplied to q wall with the specified amount. The following input file only shows
the example of how to add heat to a simple pipe flow problem with a specified pipe wall
temperature.

Figure 3 shows the specified pipe wall temperature and the calculated water tempera-
ture versus pipe length for this example problem.

46

T
e
m

p
e
ra

tu
re

 (
K

)

559

559.5

560

560.5

561

561.5

562

562.5

563

563.5

564

564.5

565

565.5

566

Length (m)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T

T_wall

Figure 3. Wall temperature and fluid temperature vs. length for
the simple pipe flow problem

5.3.2 Input File

[GlobalParams]
gravity = ’0 0 0’
initial_p = 15.51e6
initial_T = 559.15
initial_vel = 0.0
closures_type = TRACE

[]

[FluidProperties]

47

[./eos]
type = IAPWS95LiquidFluidProperties

[../]
[]

[Functions]
[./f_func]

type = PiecewiseLinear
x = ’0 0.05 0.1’
y = ’0.01 0.02 0.02’

[../]
[]

[Components]
[./pipe]

type = Pipe
position = ’0 0 0’
orientation = ’1 0 0’
length = 2.0
n_elems = 5
A = 8.78882e-5
D_h = 0.01179
fp = eos
f = f_func

[../]

[./ht_pipe1]
type = HeatTransferFromSpecifiedTemperature
pipe = pipe
T_wall = 565

[../]

[./inlet]
type = InletDensityVelocity
input = ’pipe(in)’
rho = 753.632
vel = 4.43

[../]

48

[./outlet]
type = Outlet
input = ’pipe(out)’
p = 15.51e6
legacy = true

[../]
[]

[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = ’PJFNK’
line_search = basic

[../]
[]

[Executioner]
type = Transient
scheme = ’bdf2’
dt = 0.01
dtmin = 1.0e-8

nl_rel_tol = 1e-6
nl_abs_tol = 1e-7
nl_max_its = 30

l_tol = 1e-5
l_max_its = 10

start_time = 0.0
end_time = 10.0
timestep_tolerance = 1e-10

[./Quadrature]
type = TRAP
order = FIRST

[../]

49

[]

[Outputs]
[./out_displaced]

type = Exodus
use_displaced = true
sequence = false

[../]
[]

50

5.4 Example 4: A Simple Pipe Flow Problem with the 7-Equation
Model

5.4.1 Problem Description

This example shows a two phase flow with the 7-equation model through one pipe. The
stagnation pressure and temperature boundary conditions for both the liquid and vapor
composition are provided at the pipe inlet by using the InletStagnationPressureTemperature
component. The static pressure boundary condition is used at the pipe outlet by using the
Outlet component. The initial conditions are set by the Functions block. The initial pres-
sure, velocity, temperature and void fraction distribution are provided in this example.
The initial conditions are set close to steady state solutions and the simulation quickly
converges to steady state solutions.

5.4.2 Input File

[GlobalParams]
gravity = ’0 0 0’
initial_T_liquid = 558.98002280575
initial_T_vapor = 558.98002280575
initial_p_liquid = 7.0e6
initial_p_vapor = 7.0e6
initial_vel_liquid = 0
initial_vel_vapor = 0
initial_alpha_vapor = 0.95

scaling_factor_2phase = ’1
1e1 1e1 1e-3
1e1 1e1 1e-3’

phase_interaction = true
pressure_relaxation = true
velocity_relaxation = true
interface_transfer = true
wall_mass_transfer = true

51

specific_interfacial_area_max_value = 1000
specific_interfacial_area_min_value = 1e-15

[]

[Functions]

initial pressure distribution in the pipe
[./p_func]

axis = x
type = PiecewiseLinear
x = ’0 3.66’ # this is the pipe axial direction spatial coordinate relative to the starting point
y = ’7.0008e6 7e6’

[../]

initial velocity distribution in the pipe
[./v_func]

axis = x
type = PiecewiseLinear
x = ’0 3.66’
y = ’2.44685 2.4471’

[../]

initial temperature distribution in the pipe
[./temp_func]

axis = x
type = PiecewiseLinear
x = ’0 3.66’
y = ’558.978 558.974’

[../]

\enitial void fraction distribution in the pipe
[./void_func]

axis = x
type = PiecewiseLinear
x = ’0 3.66’
y = ’0.95 0.95003’

[../]

52

[]

[FluidProperties]
[./eos]
type = IAPWS957EqnFluidProperties

[../]
[]

[Components]
[./pipe]
type = Pipe
fp = eos
position = ’0 0 0’
orientation = ’1 0 0’
A = 1.907720E-04
D_h = 1.698566E-02
length = 3.66
f = 1.698566E-02
f_interface = 0
n_elems = 50

initial condition close to steady state solutions
initial_p_liquid = p_func
initial_T_liquid = temp_func
initial_vel_liquid = v_func
initial_p_vapor = p_func
initial_T_vapor = temp_func
initial_vel_vapor = v_func
initial_alpha_vapor = void_func

[../]

[./inlet]
type = InletStagnationPressureTemperature
input = ’pipe(in)’
p0_liquid = 7.001e6
p0_vapor = 7.001e6
T0_liquid = 558.98002280575

53

T0_vapor = 558.98002280575
alpha_vapor = 0.95

[../]
[./outlet]

type = Outlet
input = ’pipe(out)’
p_vapor = 7.0e6
p_liquid = 7.0e6
legacy = true

[../]
[]

[Preconditioning]
[./SMP_PJFNK]

type = SMP
full = true
solve_type = ’PJFNK’

[../]
[]

[Executioner]
type = Transient
scheme = ’bdf2’
dt = 1e-1
dtmin = 1.e-5

nl_rel_tol = 1e-10
nl_abs_tol = 1e-8
nl_max_its = 30

l_tol = 1e-3
l_max_its = 30

start_time = 0.0
end_time = 10.0

[./Quadrature]
type = TRAP

54

order = FIRST
[../]

[]

[Outputs]
[./out_displaced]
type = Exodus
use_displaced = true
sequence = false

[../]
[]

55

5.5 Example 5: A Core Channel Problem

5.5.1 Problem Description

Figure 4. Diagram of a core channel

This example simulates fluids flow and heat transfer in a core channel. The core channel
is schematically shown in Fig. 4. This problem simulates fluid flow in one subchannel
with a single fuel rod as the heat source. A prescribed power of 77.3 KW is supplied to
the fuel rod. The boundary conditions are applied to the ends of the core channel with
InletDensityVelocity used to set the inlet boundary conditions and Outlet used to set the
outlet boundary condition.

This example includes the HeatStructureMaterials block where the parameters of the
fuel, gap, and clad are defined. Each of them are made up of different materials which are
defined by their thermal conductivity, density, and specific heat.

56

The core channel requires the hydraulic diameter, and cross sectional area to be de-
fined. These can easily be calculated using a script in RELAP-7. To do this, the user must
go to scripts folder and run ./core-channel-cylinder.py followed by two values for
the radius of the cylinder and the pitch. For example, given the radius is .004748 m and
the pitch is .0126 m. Using these values in the script will give an area of 8.7937e-5 m2, a
hydraulic diameter of .01179 m.

5.5.2 Input File

[GlobalParams]
initial_p = 155.e5
initial_vel = 0.
initial_T = 559.15

[]

[FluidProperties]
[./eos]
type = IAPWS95LiquidFluidProperties

[../]
[]

[HeatStructureMaterials]
[./fuel-mat]
type = SolidMaterialProperties
k = 2.5
Cp = 300.
rho = 1.032e4

[../]
[./gap-mat]
type = SolidMaterialProperties
k = 0.6
Cp = 1.
rho = 1.

[../]
[./clad-mat]
type = SolidMaterialProperties

57

k = 21.5
Cp = 350.
rho = 6.55e3

[../]
[]

[Components]
[./reactor]

type = PrescribedReactorPower
function = 77337.69407

[../]

[./CCH1]
type = CoreChannel
fp = eos
position = ’0 0 0’
orientation = ’0 0 1’
A = 8.79375e-5 #PWR, A = pitchˆ2 - PI * D_fuel * D_fuel / 4, pitch = 12.6 mm, D_fuel = 9.5 mm
D_h = 0.01179
length = 3.865
n_elems = 40

f = 0.01
Hw = 5.33e4
initial_Ts = 559.15

fuel-gap-clad
dim_hs = 2
fuel_type = cylinder
name_of_hs = ’fuel gap clad’
n_heatstruct = 3 #fuel-gap-clad
width_of_hs = ’0.004096 0.0001 0.000552’
elem_number_of_hs = ’10 1 2’
material_hs = ’fuel-mat gap-mat clad-mat’
power = reactor
power_fraction = ’1.0 0.0 0.0’

[../]

58

[./inlet]
type = InletDensityVelocity
input = ’CCH1:pipe(in)’
rho = 753.68
vel = 4.43

[../]
[./outlet]
type = Outlet
input = ’CCH1:pipe(out)’
p = ’155.e5’
legacy = true

[../]
[]

[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = ’PJFNK’
line_search = basic

[../]
[]

[Executioner]
type = Transient
scheme = ’bdf2’
dt = 1.e-1
dtmin = 1.e-5

nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 10

l_tol = 1e-3
l_max_its = 30

start_time = 0.0
end_time = 50.0

59

[./Quadrature]
type = TRAP
order = FIRST

[../]
[]

[Outputs]
[./out_displaced]

type = Exodus
use_displaced = true
sequence = false

[../]
[]

60

5.6 Example 6: A Two Pipes Flow Problem

5.6.1 Problem Description

Figure 5. Diagram of a two pipes flow problem

This example demonstrates flow through two pipes with different flow areas connected by
a junction. The Junction model is used in this example. The inlet boundary conditions are
set by using the InletDensityVelocity component with density set at ρ = 995Kg/m3 and
fluid velocity set at vel = 1m/s. The outlet boundary condition is set by using the Outlet
component with the outlet pressure set at p = 0.95E5Pa. The initial velocity, pressure,
and temperature are 1m/s, 1.0E5Pa, and 300K respectively. There is no heat exchange
through the pipe walls for this case.

5.6.2 Input File

[GlobalParams]
initial_p = 1.e5
initial_vel = 1.
initial_T = 300.

[]

[FluidProperties]
[./eos]

61

type = IAPWS95LiquidFluidProperties
[../]

[]

[Components]
[./pipe1]

type = Pipe
fp = eos
geometry
position = ’0 0 0’
orientation = ’1 0 0’
A = 2.
f = 1.0
length = 1
n_elems = 20
supg = true

[../]

[./pipe2]
type = Pipe
fp = eos
geometry
position = ’1 0 0’
orientation = ’1 0 0’
A = 1.
f = 1.0
length = 1
n_elems = 20
supg = true

[../]

[./junction]
type = Junction
inputs = ’pipe1(out)’
outputs = ’pipe2(in)’
K = ’1 1’
A_ref = 1.0

[../]

62

[./inlet_1]
type = InletDensityVelocity
input = ’pipe1(in)’
rho = 995
vel = 1

[../]

[./outlet_2]
type = Outlet
input = ’pipe2(out)’
p = 9.5e4
legacy = true

[../]
[]

[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = ’PJFNK’
line_search = basic
petsc_options_iname = ’-pc_type -pc_factor_shift_type -pc_factor_shift_amount’
petsc_options_value = ’ lu NONZERO 1e-10’

[../]
[]

[Executioner]
type = Transient
scheme = ’bdf2’
dt = 1.e-1
dtmin =1.0e-5

nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 10

l_tol = 1e-3

63

l_max_its = 30

start_time = 0.0
end_time = 10.0

[./Quadrature]
type = TRAP
order = FIRST

[../]
[]

[Outputs]
[./out_displaced]

type = Exodus
use_displaced = true
sequence = false

[../]
[]

64

5.7 Example 7: A Junction Case with Multiple Pipes In and Out

5.7.1 Problem Description

Figure 6. Diagram of a volume junction case with three pipes
flowing in and two pipes flowing out

This example shows a junction case which connects two pipes with water flowing into the
junction and three pipes with water flowing out of the junction. The Junction model is
used in this example. The pipe flow areas are different and the boundary conditions also
vary. The InletDensityVelocity component is used to set the boundary conditions at the
inlets of the those two pipes with water flows into the junction. The Outlet component is
used to set the boundary condition at the outlets of those three pipes with water flows out of
the junction. In this example, the HeatTrans f erFromSpeci f iedTemperature component
is used to add heat to the water in each of the pipes.

5.7.2 Input File

[GlobalParams]
initial_p = 1.e5
initial_vel = 1.
initial_T = 305.

65

[]

[FluidProperties]
[./eos]

type = IAPWS95LiquidFluidProperties
[../]

[]

[Components]
[./pipe1]

type = Pipe
fp = eos
position = ’0 0 0’
orientation = ’1 0 0’
A = 2.
f = 1.0
length = 1
n_elems = 50

[../]

[./ht_pipe1]
type = HeatTransferFromSpecifiedTemperature
pipe = pipe1
T_wall = 310
Hw = 1e4

[../]
[./pipe2]

type = Pipe
fp = eos
position = ’0 0.3 0’
orientation = ’1 0 0’
A = 1.
f = 1.0
length = 1
n_elems = 50

[../]

[./ht_pipe2]

66

type = HeatTransferFromSpecifiedTemperature
pipe = pipe2
T_wall = 310
Hw = 1e4

[../]

[./pipe3]
type = Pipe
fp = eos
position = ’1.2 0 0’
orientation = ’1 0 0’
A = 2.0
f = 1.0
length = 1
n_elems = 50

[../]

[./ht_pipe3]
type = HeatTransferFromSpecifiedTemperature
pipe = pipe3
T_wall = 310
Hw = 1e4

[../]

[./pipe4]
type = Pipe
fp = eos
position = ’1.2 0.5 0’
orientation = ’1 0 0’
A = 1.
f = 1.0
length = 1
n_elems = 50

[../]

[./ht_pipe4]
type = HeatTransferFromSpecifiedTemperature
pipe = pipe4

67

T_wall = 310
Hw = 1e4

[../]

[./pipe5]
type = Pipe
fp = eos
position = ’1.2 1.0 0’
orientation = ’1 0 0’
A = 1.5
f = 1.0
length = 1
n_elems = 50

[../]

[./ht_pipe5]
type = HeatTransferFromSpecifiedTemperature
pipe = pipe5
T_wall = 310
Hw = 1e4

[../]
[./junction]

type = Junction
inputs = ’pipe1(out) pipe2(out)’
outputs = ’pipe3(in) pipe4(in) pipe5(in)’
K = ’5 7 11 13 17’
A_ref = 3.0

[../]

[./inlet_1]
type = InletDensityVelocity
input = ’pipe1(in)’
rho = 990
vel = 1

[../]

[./inlet_2]
type = InletDensityVelocity

68

input = ’pipe2(in)’
rho = 995
vel = 1.5

[../]

[./outlet_3]
type = Outlet
input = ’pipe3(out)’
p = 9.5e4
legacy = true

[../]

[./outlet_4]
type = Outlet
input = ’pipe4(out)’
p = 9.5e4
legacy = true

[../]
[./outlet_5]
type = Outlet
input = ’pipe5(out)’
p = 9.5e4
legacy = true

[../]
[]

[Preconditioning]
[./SMP_PJFNK]
type = SMP
full = true
solve_type = ’PJFNK’
line_search = basic
petsc_options_iname = ’-pc_type -pc_factor_shift_type -pc_factor_shift_amount’
petsc_options_value = ’ lu NONZERO 1e-10’

[../]
[]

69

[Executioner]
type = Transient
scheme = ’bdf2’
dt = 1.e-1
dtmin = 1.e-4

nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 10

l_tol = 1e-3
l_max_its = 100

start_time = 0.0
end_time = 5

[./Quadrature]
type = TRAP
order = FIRST

[../]
[]

[Outputs]
[./out_displaced]

type = Exodus
use_displaced = true
sequence = false

[../]
[]

70

5.8 Example 8: A Simple Pipe Loop with a Pump

5.8.1 Problem Description

Figure 7. Diagram of a simple loop of pipes connected by junc-
tions and a pump

This example shows a single phase flow loop made up of 5 pipes, 3 junctions and a pump.
The Junction model is used for the three junctions. The pump acts as a junction, connect-
ing pipes 1 and 2, and pipe 5 is used as an outlet to help control the pressure. The initial
pressure of the system is 1.0e5 Pa and it is operating at a temperature of 300 K. The pipes
all have the same length with the exception of pipe 5 which is smaller in length than the
rest.

5.8.2 Input File

[GlobalParams]
initial_T = 300
initial_p = 1e5
initial_vel = 0

[]

71

[FluidProperties]
[./eos]

type = IAPWS95LiquidFluidProperties
[../]

[]

[Components]
[./pipe1]

type = Pipe
fp = eos
position = ’0 0 0’
orientation = ’1 0 0’
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * dˆ2
D_h = 0.01
f = 0.01
length = 1
n_elems = 20

[../]

[./pipe2]
type = Pipe
fp = eos
position = ’1 0 0’
orientation = ’0 1 0’
A = 3.14159e-4 #2.0 cm (0.02 m) in diameter, A = 1/4 * PI * dˆ2
D_h = 0.01
f = 0.01
length = 1
n_elems = 20

[../]

[./pipe3]
type = Pipe
fp = eos
position = ’1 1 0’
orientation = ’-1 0 0’
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * dˆ2
D_h = 0.01

72

f = 0.01
length = 1
n_elems = 20

[../]
[./pipe4]
type = Pipe
fp = eos
position = ’0 1 0’
orientation = ’0 -1 0’
A = 3.14159e-4 #2.0 cm (0.02 m) in diameter, A = 1/4 * PI * dˆ2
D_h = 0.01
f = 0.01
length = 1
n_elems = 20

[../]

[./pipe5]
type = Pipe
fp = eos
position = ’1 1 0’
orientation = ’0 1 0’
A = 0.785398163e-4 #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * dˆ2
D_h = 0.01
f = 0.01
length = 0.5
n_elems = 20

[../]

[./pump]
type = Pump
fp = eos
inputs = ’pipe1(out)’
outputs = ’pipe2(in)’
head = 1.0
K_reverse = ’10. 10.’
A_ref = 0.785398163e-3
initial_p = 1.e5

[../]

73

[./junction2]
type = Junction
inputs = ’pipe2(out)’
outputs = ’pipe3(in) pipe5(in)’
K = ’3. 3. 3.’
A_ref = 0.785398163e-3

[../]

[./junction3]
type = Junction
inputs = ’pipe3(out)’
outputs = ’pipe4(in)’
K = ’3. 3.’
A_ref = 0.785398163e-3

[../]
[./junction4]

type = Junction
inputs = ’pipe4(out)’
outputs = ’pipe1(in)’
K = ’3. 3.’
A_ref = 0.785398163e-3

[../]

[./outlet]
type = Outlet
input = ’pipe5(out)’
p = ’1.e5’
legacy = true

[../]
[]

[Preconditioning]
[./SMP_PJFNK]

type = SMP
full = true
solve_type = ’PJFNK’
line_search = basic

74

petsc_options_iname = ’-pc_type -pc_factor_shift_type -pc_factor_shift_amount’
petsc_options_value = ’ lu NONZERO 1e-10’

[../]
[]
[Executioner]
type = Transient
scheme = ’bdf2’
dt = 1.e-1
dtmin = 1e-7

nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
nl_max_its = 10

l_tol = 1e-3
l_max_its = 100

start_time = 0.0
end_time = 10

[./Quadrature]
type = TRAP
order = FIRST

[../]
[]

[Outputs]
[./out_displaced]
type = Exodus
use_displaced = true
sequence = false

[../]
[]

75

5.9 Example 9: A Heat Exchanger Problem

5.9.1 Problem Description

Figure 8. Diagram of a heat exchanger problem

This examples illustrates how to build a model to simulate heat transfer in an heat ex-
changer. The heat exchanger model consists of coolant flow in a pipe on the primary side,
a heat structure, and coolant flow in a pipe on the secondary side. There are two com-
ponents of HeatTrans f erFromHeatStructure used to simulate transfer transfer from the
primary side pipe to heat structure and from heat structure to the secondary side pipe. The
boundary conditions at the pipes’ ends are set by InletStagnationPressureTemperature at
the inlets and Outlet at the outlets. The inlet at the primary side lets in the hotter liquid
flow, while the secondary side inlet lets in liquid at a cooler temperature. The secondary
side liquid is used to cool down the primary side liquid so its outlet temperature is some-
what cooler while the secondary side outlet temperature is higher. This example problem
is for subcooled water only. It is operating with inlet stagnation pressures of 1.05e5 Pa and
outlet static pressures of 1.0e5 Pa. The inlet temperature for the primary side liquid is 400
K and 300 K for the secondary side liquid. The HeatStructureMaterials block is used to
define the properties of the heat structure material.

5.9.2 Input File

[GlobalParams]
initial_p = 1.0e5
initial_vel = 1.

76

initial_T = 300.0
supg = true
scaling_factor_1phase = ’1.e-1 1.e-5 1.e-8’
scaling_factor_temperature = 1e-2

[]

[FluidProperties]
[./eos]
type = IAPWS95LiquidFluidProperties

[../]
[]

[HeatStructureMaterials]
[./fuel-mat]
type = SolidMaterialProperties
k = 3.65
Cp = 288.734
rho = 1.0412e2

[../]
[./gap-mat]
type = SolidMaterialProperties
k = 1.084498
Cp = 1.0
rho = 1.0

[../]
[./clad-mat]
type = SolidMaterialProperties
k = 16.48672
Cp = 321.384
rho = 6.6e1

[../]
[./clad3-mat]
type = SolidMaterialProperties
k = 16.48672
Cp = 6.6e3
rho = 6.6e1

[../]

77

[./wall-mat]
type = SolidMaterialProperties
k = 100.0
rho = 100.0
Cp = 100.0

[../]
[]

[Components]
[./Primary_pipe]

type = Pipe
position = ’0 0.02 0’
orientation = ’1 0 0’
length = 1
n_elems = 10
fp = eos
A = 0.785398163e-4
D_h = 0.01
f = 0.01
heat_transfer_geom = PIPE

[../]

[./Wall]
type = HeatStructure
dim = 2
position = ’0 0.005 0’
orientation = ’1 0 0’
initial_T = 300.0
length = 1
n_elems = 10
names = ’solid_wall’
widths = ’0.01’
n_part_elems = ’2’
materials = ’wall-mat’
hs_type = PLATE
depth = 1

[../]

78

[./Secondary_pipe]
type = Pipe
position = ’1 0 0’
orientation = ’-1 0 0’
length = 1
n_elems = 10
fp = eos
A = 0.785398163e-4
D_h = 0.01
f = 0.01
heat_transfer_geom = PIPE

[../]

[./Hx_conn_pri]
type = HeatTransferFromHeatStructure
pipe = Primary_pipe
hs = Wall
hs_side = bottom
Hw = 1.e4

[../]

[./Hx_conn_sec]
type = HeatTransferFromHeatStructure
pipe = Secondary_pipe
hs = Wall
hs_side = top
Hw = 1.e4

[../]

[./inlet_primary_side]
type = InletStagnationPressureTemperature
input = ’Primary_pipe(in)’
p0 = 1.05e5
T0 = 400.0

[../]

[./outlet_primary_side]

79

type = Outlet
input = ’Primary_pipe(out)’
p = 1.0e5
legacy = true

[../]

[./inlet_secondary_side]
type = InletStagnationPressureTemperature
input = ’Secondary_pipe(in)’
p0 = 1.05e5
T0 = 300.0

[../]

[./outlet_secondary_side]
type = Outlet
input = ’Secondary_pipe(out)’
p = 1.0e5
legacy = true

[../]

[]

[Preconditioning]
[./SMP_PJFNK]

type = SMP
full = true
solve_type = ’PJFNK’
line_search = basic
petsc_options_iname = ’-pc_type -pc_factor_shift_type -pc_factor_shift_amount’
petsc_options_value = ’ lu NONZERO 1e-10’

[../]
[]

[Executioner]
type = Transient
scheme = ’bdf2’
dt = 1.e-1
dtmin = 1.e-4

80

nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 10

l_tol = 1e-3
l_max_its = 100

start_time = 0.0
end_time = 10

[./Quadrature]
type = TRAP
order = FIRST

[../]
[]

[Outputs]
[./out_displaced]
type = Exodus
use_displaced = true
sequence = false

[../]
[]

81

5.10 Example 10: A Loop With Core Channel and Heat Exchanger

5.10.1 Problem Description

Figure 9. Diagram of a loop with core channel and heat ex-
changer

This example is a simple loop which consists of 6 pipes, a core channel, and a heat ex-
changer. Each component differs in length, but has the same area and diameter. The core
channel is used to heat up the liquid, while the heat exchanger is used to cool it down. Pipe
5, with a pressure of 2.0e5 Pa imposed at pipe outlet, is used to control the system pressure.

82

The initial pressure, velocity, and temperature are 2.0e5 Pa, 1.0 m/s, and 300.15 K. The
coolant is operating with an inlet temperature of 300.15 K and mass flow rate of 223.77
Kg/s, and the outlet pressure of 2.0e5 Pa on the secondary side of the heat exchanger.

5.10.2 Input File

[GlobalParams]
initial_p = 2.0e5
initial_vel = 1.0
initial_T = 300.15
scaling_factor_1phase = ’1.e0 1.e-2 1.e-5’
scaling_factor_temperature = 1e-2

stabilization = evm1

[]

[Stabilizations]
[./evm1]
type = EntropyViscosity
use_first_order = true

[../]
[]

[FluidProperties]
[./eos]
type = IAPWS95LiquidFluidProperties

[../]
[]

[HeatStructureMaterials]
[./fuel-mat]
type = SolidMaterialProperties
k = 29.3
Cp = 191.67
rho = 1.4583e4

[../]

83

[./clad-mat]
type = SolidMaterialProperties
k = 26.3
Cp = 638
rho = 7.646e3

[../]

[./wall-mat]
type = SolidMaterialProperties
k = 26.3
rho = 7.646e3
Cp = 638

[../]
[]

[Components]
[./reactor]

type = PrescribedReactorPower
function = 5.1296e7

[../]

[./pipe1]
type = Pipe
fp = eos
position = ’0 1 0’
orientation = ’0 -1 0’

A = 0.44934
D_h = 2.972e-3
length = 1
n_elems = 20
f = 0.001

[../]

[./CH1]
type = CoreChannel
fp = eos
position = ’0 0 0’

84

orientation = ’0 0 1’

A = 0.44934
D_h = 2.972e-3
length = 0.8
n_elems = 20

f = 0.022
Hw = 1.6129e5 #liquid metal
P_hf = 497.778852000000

name_of_hs = ’fuel clad’
initial_Ts = 300.15
n_heatstruct = 2
fuel_type = cylinder
width_of_hs = ’0.00348 0.00052’
elem_number_of_hs = ’4 1’
material_hs = ’fuel-mat clad-mat’
power = reactor
power_fraction = ’1.0 0.0’

[../]
[./pipe2]
type = Pipe
fp = eos
position = ’0 0 0.8’
orientation = ’0 0 1’

A = 0.44934
D_h = 2.972e-3
length = 5.18
n_elems = 50
f = 0.001

[../]

[./pipe3]
type = Pipe
fp = eos
position = ’0 0 5.98’

85

orientation = ’0 1 0’

A = 0.44934
D_h = 2.972e-3
length = 1
n_elems = 20
f = 0.001

[../]

[./IHX:primary_pipe]
type = Pipe
position = ’0 1.0 5.98’
orientation = ’0 0 -1’
length = 3.71
n_elems = 50
fp = eos
A = 0.44934
D_h = 0.0186
f = 0.022

[../]

[./IHX:wall]
type = HeatStructure
dim = 2
position = ’0 1.1 5.98’
orientation = ’0 0 -1’
initial_T = 300.15
length = 3.71
n_elems = 10
names = ’solid_wall’
widths = ’0.0044’
depth = 1
n_part_elems = ’2’
materials = ’wall-mat’
hs_type = PLATE

[../]

[./IHX:secondary_pipe]

86

type = Pipe
position = ’0 1.2044 5.98’
orientation = ’0 0 -1’
length = 3.71
n_elems = 50
fp = eos
A = 0.44934
D_h = 0.014
f = 0.022

[../]

[./IHX:hx_conn_pri]
type = HeatTransferFromHeatStructure
pipe = IHX:primary_pipe
hs = IHX:wall
hs_side = bottom
Hw = 1.6129e5 # the same as the core
P_hf = 327.568860000000

[../]

[./IHX:hx_conn_sec]
type = HeatTransferFromHeatStructure
pipe = IHX:secondary_pipe
hs = IHX:wall
hs_side = top
Hw = 1.6129e5 #the same as the core
P_hf = 327.568860000000

[../]

[./pipe4]
type = Pipe
fp = eos
position = ’0 1.0 2.27’
orientation = ’0 0 -1’

A = 0.44934
D_h = 2.972e-3
length = 2.27

87

n_elems = 50
f = 0.001

[../]

[./pipe5]
type = Pipe
fp = eos
position = ’0 0 5.98’
orientation = ’0 0 1’

A = 0.44934
D_h = 2.972e-3
length = 0.02
n_elems = 10
f = 10

[../]

[./Junction1]
type = Junction
inputs = ’pipe1(out)’
outputs = ’CH1:pipe(in)’
K = ’0.5 0.5’
A_ref = 0.44934

[../]

[./Junction2]
type = Junction
inputs = ’CH1:pipe(out)’
outputs = ’pipe2(in)’
K = ’0.5 0.5’
A_ref = 0.44934

[../]
[./Junction3]

type = Junction
inputs = ’pipe2(out)’
outputs = ’pipe3(in) pipe5(in)’
K = ’0.0 0.0 0.0’

88

A_ref = 0.44934
[../]

[./Junction4]
type = Junction
inputs = ’pipe3(out)’
outputs = ’IHX:primary_pipe(in)’
K = ’0.1 0.1’
A_ref = 0.44934

[../]

[./Junction5]
type = Junction
inputs = ’IHX:primary_pipe(out)’
outputs = ’pipe4(in)’
K = ’0.0 0.0’
A_ref = 0.44934

[../]

[./Junction6]
type = Junction
inputs = ’pipe4(out)’
outputs = ’pipe1(in)’
K = ’0.0 0.0’
A_ref = 0.44934

[../]

[./pipe6]
type = Pipe
fp = eos
position = ’0 1.5 2.27’
orientation = ’0 -1 0’

A = 0.44934
D_h = 2.972e-3
length = 0.3
n_elems = 5
f = 0.001

89

[../]

[./Junction7]
type = Junction
inputs = ’pipe6(out)’
outputs = ’IHX:secondary_pipe(in)’
K = ’0.0 0.0’
A_ref = 0.44934

[../]
[./inlet]

type = InletMassFlowRateTemperature
input = ’pipe6(in)’
m_dot = 223.77
T = 300.15

[../]
[./outlet]

type = Outlet
input = ’IHX:secondary_pipe(out)’
p = 2.0e5
legacy = true

[../]

[./prezr]
type = Outlet
input = ’pipe5(out)’
p = 2e5
reversible = true
legacy = true

[../]
[]

[Preconditioning]
[./SMP_PJFNK]

type = SMP
full = true
solve_type = ’PJFNK’
petsc_options_iname = ’-pc_type -pc_factor_shift_type -pc_factor_shift_amount’
petsc_options_value = ’ lu NONZERO 1e-10’

90

[../]
[]

[Executioner]
type = Transient
scheme = ’bdf2’

dt = 1e-1
dtmin = 1e-5

nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 30

l_tol = 1e-3
l_max_its = 30

start_time = 0.0
end_time = 50.0

[./Quadrature]
type = TRAP
order = FIRST

[../]
[]

[Outputs]
[./out]
type = Exodus
use_displaced = true
sequence = false

[../]
[]

91

5.11 Example 11: A Model Pressurized Water Reactor Problem

5.11.1 Problem Description

Figure 10. Diagram of a model pressurized water reactor prob-
lem

This example shows a simplified PWR plant model. It is made up of three sections - Loop
A, Loop B and a reator vessel model. The reactor vessel region contains three parallel
core channels, a bypass flow channel, and an upper and lower plenum. The three core
channels represent all the cooling channels and fuel rods in the high power region, average
power region and low power region of the reactor core respectively. The upper and lower
plenum are modeled with junctions. The two loops have a Hot Leg, a Heat Exchanger and
its secondary side pipes, the Cold Leg and a primary Pump. The details of the Heat Ex-
changer modeling can be found in Example 9. The heat exchanger secondary side pipes are
modeled with subcooled water. Loop A contains a InletStagnationPressureTemperature

92

component that works as a pressurizer to help regulate the system pressure.

The boundary conditions are set with the mass flow rate at 9419.64 kg/s and the tem-
perature at 564.15 K at the inlet of the secondary pipe of the Heat Exchanger for each of
of the two loops. The secondary pipe outlet pressure is set at 15.17 MPa. The pressurizer
operates at a temperature of 564.15 K and a pressure of 15.17 MPa.

5.11.2 Input File

[GlobalParams]
initial_p = 15.17e6
initial_vel = 1.
initial_T = 564.15

scaling_factor_1phase = ’1.e0 1.e-2 1.e-5’
scaling_factor_temperature = 1e-2

stabilization = evm1
[]

[Stabilizations]
[./evm1]
type = EntropyViscosity
use_first_order = true

[../]
[]

[FluidProperties]
[./eos]
type = IAPWS95LiquidFluidProperties

[../]
[]

[HeatStructureMaterials]
[./fuel-mat]
type = SolidMaterialProperties
k = 3.65

93

Cp = 288.734
rho = 1.0412e2

[../]
[./gap-mat]

type = SolidMaterialProperties
k = 1.084498
Cp = 1.0
rho = 1.0

[../]
[./clad-mat]

type = SolidMaterialProperties
k = 16.48672
Cp = 321.384
rho = 6.6e1

[../]
[./clad3-mat]

type = SolidMaterialProperties
k = 16.48672
Cp = 6.6e3
rho = 6.6e1

[../]

[./wall-mat]
type = SolidMaterialProperties
k = 100.0
rho = 100.0
Cp = 100.0

[../]
[]

[Components]
[./reactor]

type = PrescribedReactorPower
function = 2.77199979e9

[../]

#Core region components ##

94

[./CH1]
type = CoreChannel
fp = eos
position = ’0 -1.2 0’
orientation = ’0 0 1’
A = 1.161864
D_h = 0.01332254
length = 3.6576
n_elems = 8

f = 0.01
Hw = 5.33e4
n_rods = 9360
initial_Ts = 564.15

n_heatstruct = 3
name_of_hs = ’FUEL GAP CLAD’
fuel_type = cylinder
width_of_hs = ’0.0046955 0.0000955 0.000673’
elem_number_of_hs = ’9 3 3’
material_hs = ’fuel-mat gap-mat clad-mat’
power = reactor
power_fraction = ’3.33672612e-1 0 0’

[../]

[./CH2]
type = CoreChannel
fp = eos
position = ’0 0 0’
orientation = ’0 0 1’
A = 1.549152542
D_h = 0.01332254
length = 3.6576
n_elems = 8

f = 0.01
Hw = 5.33e4
n_rods = 12480

95

initial_Ts = 564.15

n_heatstruct = 3
name_of_hs = ’FUEL GAP CLAD’
fuel_type = cylinder
width_of_hs = ’0.0046955 0.0000955 0.000673’
elem_number_of_hs = ’9 3 3’
material_hs = ’fuel-mat gap-mat clad-mat’
power = reactor
power_fraction = ’3.69921461e-1 0 0’

[../]

[./CH3]
type = CoreChannel
fp = eos
position = ’0 1.2 0’
orientation = ’0 0 1’
A = 1.858983051
D_h = 0.01332254
length = 3.6576
n_elems = 8

f = 0.01
Hw = 5.33e4
n_rods = 14976
initial_Ts = 564.15

n_heatstruct = 3
name_of_hs = ’FUEL GAP CLAD’
fuel_type = cylinder
width_of_hs = ’0.0046955 0.0000955 0.000673’
elem_number_of_hs = ’9 3 3’
material_hs = ’fuel-mat gap-mat clad3-mat’
power = reactor
power_fraction = ’2.96405926e-1 0 0’

[../]

[./bypass_pipe]

96

type = Pipe
fp = eos
position = ’0 1.5 0’
orientation = ’0 0 1’
A = 1.589571014
D_h = 1.42264
length = 3.6576
n_elems = 5

f = 0.001
[../]

[./LowerPlenum]
type = Junction
inputs = ’DownComer-A(out) DownComer-B(out)’
outputs = ’CH1:pipe(in) CH2:pipe(in) CH3:pipe(in) bypass_pipe(in)’
K = ’0.2 0.2 0.2 0.2 0.4 40.0’
A_ref = 3.618573408
scaling_factors = ’1e-3 1’

[../]

[./UpperPlenum]
type = Junction
inputs = ’CH1:pipe(out) CH2:pipe(out) CH3:pipe(out) bypass_pipe(out)’
outputs = ’pipe1-HL-A(in) pipe1-HL-B(in)’
K = ’0.5 0.5 0.5 80.0 0.5 0.5’
A_ref = 7.562307456
scaling_factors = ’1e-3 1’

[../]
##

#Loop A components ###
[./DownComer-A]
type = Pipe
fp = eos
position = ’0 2.0 4.0’
orientation = ’0 0 -1’
A = 3.6185734

97

D_h = 1.74724302
length = 4
n_elems = 3

f = 0.001
[../]

[./pipe1-HL-A]
type = Pipe
fp = eos
position = ’0 0.5 4.0’
orientation = ’0 0 1’
A = 7.562307456
D_h = 3.103003207
length = 4.
n_elems = 3

f = 0.001
[../]

[./pipe2-HL-A]
type = Pipe
fp = eos
position = ’0 0.5 8.0’
orientation = ’0 1 0’
A = 2.624474
D_h = 1.828
length = 3.5
n_elems = 3

f = 0.001
[../]

[./pipe1-CL-A]
type = Pipe
fp = eos
position = ’0 3.0 4.0’
orientation = ’0 -1 0’

98

A = 2.624474
D_h = 1.828
length = 1.
n_elems = 3

f = 0.001
[../]

[./pipe2-CL-A]
type = Pipe
fp = eos
position = ’0 4 4.0’
orientation = ’0 -1 0’
A = 2.624474
D_h = 1.828
length = 0.8
n_elems = 3

f = 0.001
[../]

[./pipe1-SC-A]
type = Pipe
fp = eos
position = ’0 5.2 4.0’
orientation = ’0 -1 0’
A = 2.624474
D_h = 1.828
length = 1.
n_elems = 3

f = 0.001
[../]

[./pipe2-SC-A]
type = Pipe
fp = eos
position = ’0 4.2 8.0’

99

orientation = ’0 1 0’
A = 2.624474
D_h = 1.828
length = 1.
n_elems = 3

f = 0.001
[../]

[./Junction1-A]
type = Junction
inputs = ’pipe1-HL-A(out)’
outputs = ’pipe2-HL-A(in) pipe-to-Pressurizer(in)’
K = ’0.5 0.7 80.’
A_ref = 7.562307456
scaling_factors = ’1e-3 1’

[../]

[./Junction2-A]
type = Junction
inputs = ’pipe1-CL-A(out)’
outputs = ’DownComer-A(in)’
K = ’0.5 0.7’
A_ref = 3.6185734
scaling_factors = ’1e-3 1’

[../]

[./Junction3-A]
type = Junction
inputs = ’pipe2-HL-A(out)’
outputs = ’HX-A:primary_pipe(in)’
K = ’0.5 0.7’
A_ref = 2.624474
scaling_factors = ’1e-3 1’

[../]

[./Pump-A]
type = Pump

100

fp = eos
inputs = ’pipe2-CL-A(out)’
outputs = ’pipe1-CL-A(in)’
A_ref = 2.624474
K_reverse = ’0 0’
head = 8.66

[../]

[./HX-A:primary_pipe]
type = Pipe
position = ’0 4 8’
orientation = ’0 0 -1’
length = 4
n_elems = 10
fp = eos
A = 5.
D_h = 0.01
f = 0.01

[../]

[./HX-A:wall]
type = HeatStructure
dim = 2
position = ’0 4.1 8’
orientation = ’0 0 -1’
initial_T = 564.15
length = 4
n_elems = 10
names = ’solid_wall’
widths = ’0.001’
n_part_elems = ’2’
materials = ’wall-mat’
hs_type = PLATE
depth = 1

[../]

[./HX-A:secondary_pipe]

101

type = Pipe
position = ’0 4.201 4’
orientation = ’0 0 1’
length = 4
n_elems = 10
fp = eos
A = 5.
D_h = 0.01
f = 0.01

[../]

[./HX-A:hx_conn_pri]
type = HeatTransferFromHeatStructure
pipe = HX-A:primary_pipe
hs = HX-A:wall
hs_side = bottom
Hw = 1.e4
P_hf = 2695.1

[../]

[./HX-A:hx_conn_sec]
type = HeatTransferFromHeatStructure
pipe = HX-A:secondary_pipe
hs = HX-A:wall
hs_side = top
Hw = 1.e4
P_hf = 2695.1

[../]

[./Junction4-A]
type = Junction
inputs = ’pipe1-SC-A(out)’
outputs = ’HX-A:secondary_pipe(in)’
K = ’0.5 0.7’
A_ref = 2.624474e2
scaling_factors = ’1e-3 1’

[../]

102

[./Junction5-A]
type = Junction
inputs = ’HX-A:secondary_pipe(out)’
outputs = ’pipe2-SC-A(in)’
K = ’0.5 0.7’
A_ref = 2.624474e2
scaling_factors = ’1e-3 1’

[../]

[./Junction6-A]
type = Junction
inputs = ’HX-A:primary_pipe(out)’
outputs = ’pipe2-CL-A(in)’
K = ’0.5 0.7’
A_ref = 2.624474e2
scaling_factors = ’1e-3 1’

[../]

[./MassFlowRateIn-SC-A]
type = InletMassFlowRateTemperature
input = ’pipe1-SC-A(in)’
m_dot = 9419.640610595952
T = 564.15

[../]
[./PressureOutlet-SC-A]
type = Outlet
input = ’pipe2-SC-A(out)’
p = ’151.7e5’

[../]
##

#Loop B components ###
[./DownComer-B]
type = Pipe
fp = eos
position = ’0 -2.0 4.0’
orientation = ’0 0 -1’
A = 3.6185734

103

D_h = 1.74724302
length = 4
n_elems = 3

f = 0.001
[../]

[./pipe1-HL-B]
type = Pipe
fp = eos
position = ’0 -0.5 4.0’
orientation = ’0 0 1’
A = 7.562307456
D_h = 3.103003207
length = 4.
n_elems = 3

f = 0.001
[../]

[./pipe2-HL-B]
type = Pipe
fp = eos
position = ’0 -0.5 8.0’
orientation = ’0 -1 0’
A = 2.624474
D_h = 1.828
length = 3.5
n_elems = 3

f = 0.001
[../]

[./pipe1-CL-B]
type = Pipe
fp = eos
position = ’0 -3.0 4.0’
orientation = ’0 1 0’

104

A = 2.624474
D_h = 1.828
length = 1.
n_elems = 3

f = 0.001
[../]

[./pipe2-CL-B]
type = Pipe
fp = eos
position = ’0 -4.0 4.0’
orientation = ’0 1 0’
A = 2.624474
D_h = 1.828
length = 0.8
n_elems = 3

f = 0.001
[../]

[./pipe1-SC-B]
type = Pipe
fp = eos
position = ’0 -5.2 4.0’
orientation = ’0 1 0’
A = 2.624474
D_h = 1.828
length = 1.
n_elems = 3

f = 0.001
[../]

[./pipe2-SC-B]
type = Pipe
fp = eos
position = ’0 -4.2 8.0’

105

orientation = ’0 -1 0’
A = 2.624474
D_h = 1.828
length = 1.
n_elems = 3

f = 0.001
[../]

[./Junction1-B]
type = Junction
inputs = ’pipe1-HL-B(out)’
outputs = ’pipe2-HL-B(in)’
K = ’0.5 0.7’
A_ref = 7.562307456
scaling_factors = ’1e-3 1’

[../]

[./Junction2-B]
type = Junction
inputs = ’pipe1-CL-B(out)’
outputs = ’DownComer-B(in)’
K = ’0.5 0.7’
A_ref = 3.6185734
scaling_factors = ’1e-3 1’

[../]

[./Junction3-B]
type = Junction
inputs = ’pipe2-HL-B(out)’
outputs = ’HX-B:primary_pipe(in)’
K = ’0.5 0.7’
A_ref = 2.624474
scaling_factors = ’1e-3 1’

[../]

[./Pump-B]
type = Pump

106

fp = eos
inputs = ’pipe2-CL-B(out)’
outputs = ’pipe1-CL-B(in)’
A_ref = 2.624474
K_reverse = ’0 0’
head = 8.66

[../]

[./HX-B:primary_pipe]
type = Pipe
position = ’0 -4 8’
orientation = ’0 0 -1’
length = 4
n_elems = 10
fp = eos
A = 5.
D_h = 0.01
f = 0.01

[../]

[./HX-B:wall]
type = HeatStructure
dim = 2
position = ’0 -4.101 8’
orientation = ’0 0 -1’
axial_offset = 0
initial_T = 564.15
length = 4
n_elems = 10
names = ’solid_wall’
widths = ’0.001’
n_part_elems = ’2’
materials = ’wall-mat’
hs_type = PLATE
depth = 1

[../]

[./HX-B:secondary_pipe]

107

type = Pipe
position = ’0 -4.201 4’
orientation = ’0 0 1’
length = 4
n_elems = 10
fp = eos
A = 5.
D_h = 0.01
f = 0.01

[../]

[./HX-B:hx_conn_pri]
type = HeatTransferFromHeatStructure
pipe = HX-B:primary_pipe
hs = HX-B:wall
hs_side = top
Hw = 1.e4
P_hf = 2695.1

[../]

[./HX-B:hx_conn_sec]
type = HeatTransferFromHeatStructure
pipe = HX-B:secondary_pipe
hs = HX-B:wall
hs_side = bottom
Hw = 1.e4
P_hf = 2695.1

[../]

[./Junction4-B]
type = Junction
inputs = ’pipe1-SC-B(out)’
outputs = ’HX-B:secondary_pipe(in)’
K = ’0.5 0.7’
A_ref = 2.624474e2
scaling_factors = ’1e-3 1’

[../]

108

[./Junction5-B]
type = Junction
inputs = ’HX-B:secondary_pipe(out)’
outputs = ’pipe2-SC-B(in)’
K = ’0.5 0.7’
A_ref = 2.624474e2
scaling_factors = ’1e-3 1’

[../]

[./Junction6-B]
type = Junction
inputs = ’HX-B:primary_pipe(out)’
outputs = ’pipe2-CL-B(in)’
K = ’0.5 0.7’
A_ref = 2.624474e2
scaling_factors = ’1e-3 1’

[../]

[./MassFlowRateIn-SC-B]
type = InletMassFlowRateTemperature
input = ’pipe1-SC-B(in)’
m_dot = 9419.640610595952
T = 564.15

[../]
[./PressureOutlet-SC-B]
type = Outlet
input = ’pipe2-SC-B(out)’
p = 15.17e6

[../]
##

Pressurizer
[./pipe-to-Pressurizer]
type = Pipe
fp = eos
position = ’0 0.5 8.0’
orientation = ’0 0 1’

109

A = 2.624474
D_h = 1.828
length = 0.5
n_elems = 3

f = 10.
[../]

[./Pressurizer]
type = InletStagnationPressureTemperature
input = ’pipe-to-Pressurizer(out)’
p0 = 15.17e6
T0 = 564.15
reversible = true

[../]
##

[]

[Preconditioning]
[./SMP_PJFNK]

type = SMP
full = true
solve_type = ’PJFNK’
line_search = basic
petsc_options_iname = ’-pc_type -pc_factor_shift_type -pc_factor_shift_amount’
petsc_options_value = ’ lu NONZERO 1e-10’

[../]
[]

[Executioner]
type = Transient
scheme = ’bdf2’

nl_rel_tol = 1e-6
nl_abs_tol = 1e-6
nl_max_its = 10

110

l_tol = 1e-3
l_max_its = 30

start_time = 0.0
end_time = 200
[./TimeStepper]
type = SolutionTimeAdaptiveDT
dt = 0.01

[../]
dtmin = 1e-6

[./Quadrature]
type = TRAP
order = FIRST

[../]
[]

[Outputs]
[./exodus]
type = Exodus
file_base = TMI_2loop
use_displaced = true
sequence = false
execute_on = ’initial final’

[../]
[./console]
type = Console
execute_scalars_on = none

[../]
[]

111

References

[1] D. A. Knoll and D. E. Keyes, “Jacobian-free Newton-Krylov methods: a survey of
approaches and applications,” Journal of Computational Physics, vol. 193, pp. 357–
397, Jan. 2004. http://dx.doi.org/10.1016/j.jcp.2003.08.010.

[2] P. N. Brown and A. C. Hindmarsh, “Matrix-free methods for stiff systems of ODEs,”
SIAM J. Numer. Anal., vol. 23, pp. 610–638, June 1986. http://www.jstor.org/
stable/2157527.

[3] B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, “libMesh: A C++ Library
for Parallel Adaptive Mesh Refinement/Coarsening Simulations,” Engineering with
Computers, vol. 22, no. 3–4, pp. 237–254, 2006. http://dx.doi.org/10.1007/
s00366-006-0049-3.

[4] S. Balay, W. D. Gropp, L. Curfman-McInnes, and B. F. Smith, “Efficient management
of parallelism in object oriented numerical software libraries,” in Modern Software
Tools in Scientific Computing (E. Arge, A. M. Bruaset, and H. P. Langtangen, eds.),
pp. 163–202, Birkhäuser Press, 1997.

[5] M. Heroux et al., “An overview of Trilinos,” Tech. Rep. SAND2003-2927, Sandia
National Laboratories, 2003.

[6] H. Zhang, L. Zou, D. Andrs, H. Zhao, and R. C. Martineau, “Point Kinetics Calcula-
tions with Fully Coupled Thermal Fluids Reactivity Feedback,” in International Con-
ference on Mathematics, Computational Methods & Reactor Physics (M&C 2013),
(Sun Valley, Idaho, USA), May 5–9, 2013.

[7] L. Zou, J. Peterson, H. Zhao, H. Zhang, D. Andrs, and R. C. Martineau, “Solving
Multi-Mesh Flow and Conjugate Heat Transfer Problems with RELAP-7,” in Interna-
tional Conference on Mathematics, Computational Methods & Reactor Physics (M&C
2013), (Sun Valley, Idaho, USA), May 5–9, 2013.

[8] R. D. Falgout and U. M. Yang, “HYPRE: A Library of High Performance Precondi-
tioners,” in International Conference on Computational Science, pp. 632–641, 2002.

112

http://dx.doi.org/10.1016/j.jcp.2003.08.010
http://www.jstor.org/stable/2157527
http://www.jstor.org/stable/2157527
http://dx.doi.org/10.1007/s00366-006-0049-3
http://dx.doi.org/10.1007/s00366-006-0049-3

v1.28

	4952
	RELAP-7 Overview
	RELAP-7 Features
	Software Framework
	Governing Theory
	Computational Approach

	Model Description
	Fluids Flow Models
	Fluid Properties
	Solution Stabilization Schemes
	Time Integration Schemes
	Components
	Check Valves
	Compressible Valve
	Core Channel
	Down Comer
	Elbow Pipe
	Free Boundary
	Heat Generation
	Heat Structure
	Heat Transfer from an External Application
	Heat Transfer from Heat Flux
	Heat Transfer from Heat Structure
	Heat Transfer from Specified Temperature
	Ideal Pump
	InletDensityVelocity
	InletMassFlowRateTemperature
	InletStagnationEnthalpyMomentum
	InletStagnationPressureTemperature
	Junction
	Outlet
	Pipe
	Pipe With Heat Structure
	Point Kinetics
	Prescribed Reactor Power
	Pump
	Reactivity Feedback
	Solid Wall
	RCIC Turbine
	Valve
	Volume Junction
	Wet Well

	Running RELAP-7
	Complete Step 1 of MOOSE Environment Setup
	Off-site Access
	Setup Your SSH Key
	Checking Out the Code
	Executing RELAP-7
	Post Processing

	Input Files
	Global Parameters
	Fluid Properties
	HeatStructureMaterials
	Functions
	Components
	Preconditioner
	Executioner
	Outputs

	Examples
	Example 1: A Simple Pipe Flow Problem
	Problem Description
	Input File

	Example 2: Use Functions to Set Initial Conditions for a Simple Pipe Flow Problem
	Problem Description
	Input File

	Example 3: Adding Heat to a Simple Pipe Flow Problem
	Problem Description
	Input File

	Example 4: A Simple Pipe Flow Problem with the 7-Equation Model
	Problem Description
	Input File

	Example 5: A Core Channel Problem
	Problem Description
	Input File

	Example 6: A Two Pipes Flow Problem
	Problem Description
	Input File

	Example 7: A Junction Case with Multiple Pipes In and Out
	Problem Description
	Input File

	Example 8: A Simple Pipe Loop with a Pump
	Problem Description
	Input File

	Example 9: A Heat Exchanger Problem
	Problem Description
	Input File

	Example 10: A Loop With Core Channel and Heat Exchanger
	Problem Description
	Input File

	Example 11: A Model Pressurized Water Reactor Problem
	Problem Description
	Input File

	References

